

DIRECT ACTION PRESSURE REDUCING VALVE

• For steam and gases. (For liquids, consult our technical department). Suitable for application in; ironing machines, laundries and dry cleaners, cooking vats, textile machinery, drying cylinders, autoclaves, steam ovens, distilleries, heat exchangers, the food industry, chemical laboratories, etc.

ecifications:

- Materials carefully selected for resistance to wear, extreme temperatures and corrosion. They can be fully recycled, and use a single, non-metallic, asbestos-free joint.

 • Simplicity of design, ensuring minimum maintenance requirements.
- Easy installation; may be assembled in any position, even upside down.
- Moderate weight and size.
- Interior design conceived for maximum capacity and performance for size.
- Easy to adjust. The valves are supplied unregulated, but with the corresponding spring, duly identified, for the required pressure reduction.
 Rating plate which identifies the regulation field.
- Three springs, easily interchangeable and identified by colour and code.
- Anchoring system immune to vibrations; may be sealed to prevent manipulation. Selft-centring lock, independent of axle, designed to guarantee absolue precision of regulation at the most demanding points.
- Protective filter for the locking surfaces.

 High degree of airtightness of the lock at zero consumption, exceeding the requirements of DIN-3230. Page 3.

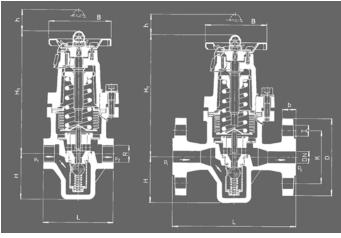
 | Airtight transport to the lock at zero consumption, exceeding the requirements of DIN-3230. Page 3.
- Stainless steel bellows welded to the plasma. Airtightness tested with helium, ensuring absolute reliability and long life.
- All valves undergo throrough testing.
 Each component is numbered, registered and inspected. If previously requested, the valve will be accompanied by certificates corresponding to materials, batch, tests and performance. **IMPORTANT**

Depending on demand:

- May be manufactured using other materials for specific working conditions (high temperatures, fluids, etc.).
- Other connections.
- Degreased and completely free of oils and greases.

•		•							
Nii	D:	Material							
No. piece	Piece	Nodular iron	Carbon steel	Stainless steel					
1 23 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28	Body Cover Seating Guide Lock Filter Auxiliary spring Cap Bellows ring Bellows disc Bellows disc Bellows Axle Separator disc Regulation screw Spring press Spring Rating plate Handwheel Body joint Seating joint Nut Washer Washer Screw Washer Anchoring bolt Seal Sealing wire	Nodular iron (DIN-0,7043 GGG-40.3) Aluminium (DIN-3,2581.01 G-AISi12) Stainless steel (DIN-1,4057) (AISI-431) Graphite PTFE (Teffon) Stainless steel (DIN-1,404) Stainless steel (DIN-1,404) (AISI-316L) Stainless steel (DIN-1,4404) (AISI-316L) Stainless steel (DIN-1,4040) (AISI-316L) Carbon steel (DIN-1,1191 Ck-45) Carbon steel (DIN-1,1191 Ck-45) Carbon steel (DIN-1,1401) (AISI-304) Aluminium (DIN-3,2581.01 G-AISI12) Graphite Stainless steel (DIN-1,4404) (AISI-316L) Carbon steel (DIN-1,1141 Ck-15)	Carbon steel (DIN-1.0619 GS-C 25) Aluminium (DIN-3.2581.01 G-AlSi12) Stainless steel (DIN-1.4057) (AISI-431) Graphite PTFE (Teffon) Stainless steel (DIN-1.404) (AISI-316L) Stainless steel (DIN-1.4404) (AISI-316L) Carbon steel (DIN-1.1191 Ck-45) Carbon steel (DIN-1.1401) (AISI-304) Aluminium (DIN-3.2581.01 G-AISI12) Graphite Stainless steel (DIN-1.1411 Ck-15) Carbon steel (DIN-1.1141 Ck-15)	Stainless steel (DIN-1 4408) (AISI-316) Aluminium (DIN-3.2581.01 G-AISi12) Stainless steel (DIN-1 4057) (AISI-431) Graphite PTFE (Teflon) Stainless steel (DIN-1 4040) Stainless steel (DIN-1 4404) (AISI-316L) Stainless steel (DIN-1 4571) (AISI-316L) Carbon steel (DIN-1 1101 (Ck-45) Carbon steel (DIN-1 1101 (Ck-45) Carbon steel (DIN-1 1401) (AISI-316L) Stainless steel (DIN-1 4301) (AISI-304) Aluminium (DIN-3.2581.01 (G-AISi12) Graphite Stainless steel (DIN-1 1404) (AISI-316L) Carbon steel (DIN-1 1141 (Ck-15) Carbon steel (DIN-1 1141 (Ck-15) Carbon steel (DIN-1 1141 (Ck-15) Stainless steel (DIN-1 4401) (AISI-316) Stainless steel (DIN-1 4401) (AISI-316) Carbon steel (DIN-1 14401) (AISI-316) Carbon steel (DIN-1 14401) (AISI-316) Carbon steel (DIN-1 1411 (Ck-15) Lead Sealing wire					
	R	1/2" to 1							
DN			15 to 25						
PN		25	40	40					
Operating	Pressure (bar)	17	17	17					
conditions	Max. temp. (°C)	210	230	230					
	Min. temp. (°C)	-10	-10	-60					

ARMAT spol. s r. o.


Řetová 82, 561 41 Czech republic Tel/Fax: + 420 465 585 258 / 254

http://www.armat.cz armat@pvtnet.cz armat@cominnet.cz

Ormat)

DIRECT ACTION PRESSURE REDUCING VALVE

N	Iodel				513					514									
R	DN	1/2" 3/4"				1"			15 20 25										
Cor	nection				gas-tight cylindrical female 28/1 1978 (DIN-259)					PN-25 DIN 2544 PN-40 DIN 2545									
	Н		57		57			57		57		57		57					
	H1		150		150		150		150		150		150						
	h		25		25			25		25		25			25				
	L		85		95		105		150		150			160					
	В		75		75		75		75		75			75					
	D		-		-		-		95		105		115						
	K		-		-		-		65		75		85						
	I		-		-		-		14		14		14						
	b		-		-		-		16		18		18						
	LLS N°.		-		-		-		4		4		4						
(kg)	Nodular iron	_	1,98	_	2,05		2,29		3,60		3,65		4,73		:				
Weight(kg)	हैं Carbon st. 2,08			2,15		2,44		3,85		3,95		5,05 5,20							
§ 8	Stainless st. 2,13		2,25		2,55		3,95		4,08		5,20								
Spring regulating	range in bar (reduced pressure)	0,14 to 1,70	1,40 to 4,00	3,50 to 8,60	0,14 to 1,70	1,40 to 4,00	3,50 to 8,60	0,14 to 1,70	1,40 to 4,00	3,50 to 8,60	0,14 to 1,70	1,40 to 4,00	3,50 to 8,60	0,14 to 1,70	1,40 to 4,00	3,50 to 8,60	0,14 to 1,70	1,40 to 4,00	3,50 to 8,60
		513.60261	513.60262	513.60263	513.63461	513.63462	513.63463	513.61061	513.61062	513.61063	514.60261	514.60262	514.60263	514.63461	514.63462	514.63463	514.61061	514.61062	514.61063
Code	Carbon steel Nodular iron 2001-	513.80241	513.80242	513.80243	513.83441	513.83442	513.83443	513.81041	513.81042	513.81043	514.80241	514.80242	514.80243	514.83441	514.83442	514.83443	514.81041	514.81042	514.81043
	Stainless steel 2001-	513.80221	513.80222	513.80223	513.83421	513.83422	513.83423	513.81021	513.81022	513.81023	514.80221	514.80222	514.80223	514.83421	514.83422	514.83423	514.81021	514.81022	514.81023

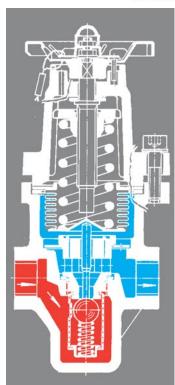


Table of pressures, flow coefficients and regulation fields									
	R	1/2"	1/2" 3/4"						
	DN	15	20 25						
Max. i	nput pressure	17							
Max	. reduction dit	P1:10							
Min. re	duced pressur	0,14							
Flow	coeficient Kvs	1,50	2,50	3,00					
' (<u>1</u> ' '	0,14 to 1,70	Code							
(ba	0,14 10 1,70	Identification color							
Spring regula- ting range (bar) (reduced pres- sure)	1,40 to 4,00	Code	56495						
	1,40 10 4,00	Identification color							
pri ng red	3,50 to 8,60	Code							
SH	3,30 10 8,00	Identification color	Red						

Flows											
	R	1/:	2"	3/4	4"	1"					
DN		1	5	2	0	25					
Pressure (bar)		I – Satureted steam in Kg/h II – Air at 0 °C and 1,013 bar in Nm3/h For liquids, consult our technical department									
Input P1	Reduced P2	I	II	I	II	I	II				
2	0,2 1	6 26	8 35	7 32	9 39	10 42	14 58 71				
	1,5 0,3	30 12	40 15	37 15	48 18	42 52 21	71 27				
2	1	30	33 54	37 52	49	54 73	74				
3	1,5 2	42 50	54 67	52 64	67 82	89	101 123				
	2,5 0.4	66	75 25	70 24	93 30	99 32	138				
	ĺ	19 38	49	45	61	69	43 89				
4	1,5	50 62	67 82	62 77	82 100	87 108	121 150				
	2,5	70	91	87	114	122	172				
	3 0,5	75 42	98 57	92 52	121 69	129 79	189 98				
5	2	68	90	85	113	120	168				
,	3 4	88 96	115 125	108 120	143 155	153 168	213 232				
	0,6	46 74	60	57 92	74 123	82 132	108				
6	3	98	98 126	120	159	132 171	181 236				
, and	4	110	142	136	180	192	265 260				
	5 0,7	106 50	139 67	132 63	175 84	188 89	260 119				
7	<u>2</u> 3	81	106	102	133	142	194				
7	4	104 118	135 154	131 148	171 194	182 206	254 288				
	6 0,8	114	150 71	142 67	188 88	201 94	278 129				
	2	54 87	113	108	141	152	213				
8	3 4	112 129	146 169	138 162	181 221	196 227	272 314				
	6	138	180	173	253	245	338				
	0,9 2.	48 90	67 116	63 120	82 147	92 157	125 216				
9	3	116	151	145	189	204	280				
,	4 5 7	136 150	177 195	170 187	221 244	239 264	333 363				
	7	155	199 77	194 73	250 95	275 105	374 142				
	2	58 92	122	121 150	151 196	164	227				
10	3 4	120	158 186	150 178	196 233	214 250	293 347				
	6	142 170	208	178 212 220	233 277	297	412				
	8 1,1	178 66	229 88	82	286 108	307 121	426 160				
	2	96	127	82 123	159	171	240				
11	3 4	130 158	170 205	162 195	212 255	227 276	316 380				
	6 8	196 214	221 278	242 266	317 347	339 374	473 518				
	8.6	218	284	271	355	383 132	530				
	1,2 2	73 108	99 135	95 128	126 167	132 178	186 249				
10	3	138	177	170	221	240	332				
12	4 6	165 206	214 268	205 255	268 332	290 360	398 492				
	8	230 233	300	285 289	374	404	578 579				
	8,6 1,3	85	305 111	106	380 140	414 148	208				
	3	110 141	141 185	134 175	175 231	187 249	260 343				
13	4	170	224	213	278	298	343 412				
	6 8	217 246	283 325	281 307	350 403	382 435	527 604				
	8.6	251	325 356	314	412	445	615				
	1,5 2 3	92 112	117 142	113 138	148 179	161 196	220 266				
1.5	3	144	187	177	236	252	348				
15	4 6	172 202	229 284	208 290	285 365	308 390	420 544				
	8	222 240	336 343	318	419 428	448 459	626				
	8,6 1,7	104	128	355 123	160	173	639 239				
	2 3	116 147	145 191	141 181	183 241	196 258	270 355				
17	4	174	233	221	328 373	314	429				
	6 8	206 229	300 349	296 304	373 434	404 469	556 650				
	8,6	252	359	344	444	478	673				

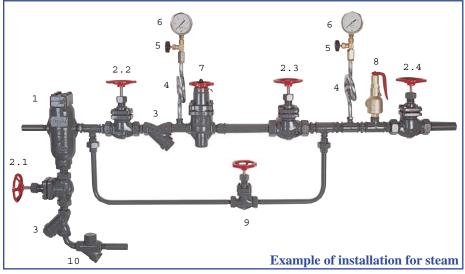
DIRECT ACTION PRESSURE REDUCING VALVE

Operation:

The operation of the reducing valve is based on the principle of direct action. The force exerted by the spring displaces the axle and maintains the locking ball open. The fluid exerts an opposite force on the hood as it passes, which tends to reduce the section of passage of the fluid through the seating. The action of the spring and reaction of the pressure on the bellows balance each other, and the reduced pressure is maintained constant.

The fluctuations in consumption affect the reduced pressure. The bellows detects these variations via the balance hole, provoking a change in the passage of fluid as a function of the established

In working conditions with zero consumption, the valve remains closed and completely airtight when there is a slight increase in reduced pressure.

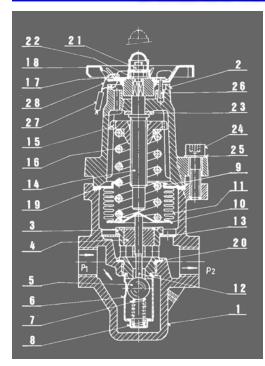

- · Allways install the valve in a section of horizontal tubing, as close as possible to the point of consumption.
- The valve may be assembled in any position, even upside-down.
- Verify that the fluid flows in the direction indicated by the arrow on the body of the valve.
- The input and output tubes must be of the correct size and properly supported, to avoid any fall in pressure or tension.
- The input and output tubes must be of the correct size and properly supported, to avoid any fall in pressure or tension.

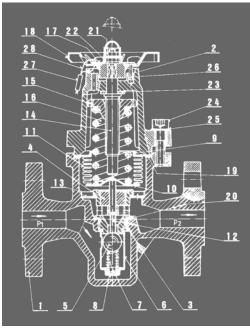
- In pressure or tension.

 In accordance with the requirements of "Regulations for pressure devices ITC-MIEAP 2 5.8", the pressure reduction facilities in steam circuits will be supplied with:

 1. A pressure gauge with syphon tube and three end cock, in accordance with article 11 of the MIE-AP 1 instructions, "Boilers", located before and after the reduction valve.

 2. A safety valve following the reduction valve, capable of evacuating the maximum flow of steam, which permits flow at the level regulated and adjusted to the maximum reduced pressure of service plus a maximum of 10%.
- Area of influence of input pressure (P1)
- Area of influence of reduced pressure (P2)


- 1 Condensate separator
- 2 Interruption valve
- 3 Filter
- 4 Syphon tube
- 5 Pressure gauge cock
- 6 Pressure gauge
- 7 Pressure reducing valve
- 8 Safety valve
- 9 Interruption valve with adjusting cone
- 10 Condensate purger


IMPORTANT:

- The distance between the pressure reducing valve and the interruption valves and must be 8 ÷ 10 times the diameter of the tube.
- It is advisable to install the separator and the condensate purger using wet steam with dragging.
- We recommend that the reduction device be equipped with a by-pass and interruption valve with an adjusting cone .

DIRECT ACTION PRESSURE REDUCING VALVE

Start-up and adjustment of the reduced pressure:

- 1 Before start-up, the tubes and the inside of the valve itself should be cleaned, eliminating any residues or impurities, particularly from the locking surfaces.
- 2 Check the rating plate (17) to verify that the regulation field for the reduced pressure is appropriate and that the spring (16) corresponds to the same range.
- 3 Remove the nut (21), the rating plate (17) and the anchoring bolt (26).
- 4 With the input interruption valve fully open and the output interruption valve closed, turn the handwheel (18) gradually from left to right to increase the reduced pressure, or from right to left to decrease it, until the required reduced pressure is obtained at zero consumption.
- 5 Slowly open the output interruption valve.
- 6 Readjust the required reduced pressure in consumption conditions.
- 7 Put the anchoring bolt (26) and the rating (17) in place, and fix with the nut (21).
- 8 Seal the valve to prevent further adjustments, using the sealing wire (28) and the seal (27).
- 9 We recommend that the input pressure P1 and the reduced pressure P2 be recorded in the corresponding space of the rating plate (17).

Assembly and disassembly:

- 1 Unseal the valve by cutting the wire (28).
- 2 Remove the nut (21), the rating plate (17) and the anchoring bolt (26).
- 3 Turn the handwheel (18) from right to left until you notice the spring (16) loosening.
- 4 Remove the screws (24) along with the washers (25).
- 5 Separate the cover (2) from the body (1), and you will have access to all the internal components. This enables simple maintenance and replacement of the spring (16), the bellows components (9) (10) (11) and the seating components (3) (4) (5) (6) (7) (8).
- 6 If the seating has been disassembled, replace the joint (20) with a new one. Put a new body joint in place (19).
- 7 Put the axle (12) in the guide hole (4) and check that it can move freely and is perpendicular to the bellows disc (10) when the bellows components (9) (10) (11) are put in place.
- 8 Select the spring (16) corresponding to the reduced pressure.
- 9 Put the cover (2) on the body (1) and the screws (24) with the washers (25), and screw them in.
- 10 Finally, proceed as described in "Start-up and adjustment of the reduced pressure".

Maintenance:

- Correct installation with interruption valves at the input and output points facilitates maintenance.
- The filter (6) should be cleaned regularly.
- When assembling the valve, replace the seating joint (20) and body joint (19) with new ones.